HINDLEY J AND I SCHOOL

Written Calculation Policy

September 2023

This Policy is also supplemented by self-guide video tutorials on the school website https://hindley.wigan.sch.uk/maths.html

- ${ }^{3}$. Andaition	Early Years
Calculation	Written Strategy
$5+1=6$	$\begin{aligned} 00000+0 & =000000 \\ 5+1 & =6 \end{aligned}$
$4+3=7$	Children count on form the biggest number by drawing three objects/circles first $4+3_{000}=7$
$7+2=9$	Children start at the biggest number and count on in their heads (using fingers if they need to).

+ ${ }^{+\infty}$	Year 1
Calculation	Written Strategy
$6+9=9$	Children begin by drawing the amounts they are adding:
	$000000+000=9$
	Moving to starting with largest number, counting on with the smaller number:
	$6+000$
	Similar to Reception but will work with a bigger number range.
$3+5=8$	Combining to parts to make a whole in a part-whole model:
$12+5=17$	Children create their own blank number lines to calculate their answer.

	Year 2
Calculation	Written Strategy
$28+14=42$	Children begin to use practical equipment in columns to calculate the answer, moving to recording this written:
$32+25=57$	After becoming secure recording their answer pictorially (left), they begin to record their additions in expanded column addition (right):
$23+19=42$	Children use the expanded column addition method to understand how to exchange ones and tens.
$28+14=42$	When the children become confident, they begin to record their answer as compact addition, noting carried-over digits below:

	Year 3
Calculation	Written Strategy
$32+24=56$	Children only record pictorially (left) at the very beginning of Year 3 to recap prior learning. Children to then only record abstract (right):
$147+36=183$	Children to use pictorial representation to become confident with compact column addition using 3-digit numbers including carrying:
$226+115=341$	Children to move to compact column addition without using pictorial representations:

	Year 4
Calculation	Written Strategy
$168+39=207$	Children to record addition in columns, recording carrying over below:
$\begin{aligned} & 3,456+278 \\ & =3,3734 \end{aligned}$	Children use column addition with up to 4-digit numbers:

+ ${ }^{\text {P }}$ +	Year 5
Calculation	Written Strategy
$\begin{aligned} & 198,654+24,187 \\ & =222,841 \end{aligned}$	Children use column addition as shown in Year 4, but also for numbers with more than 4-digits:
	$\begin{array}{r} 198654 \\ +24187 \end{array}$
	222841
	 1 1 1 1
$12.63+0.8=13.43$	Children use column addition with decimals, using 0 place value holders:
	$13 \cdot 43$
	1

Sabeaction	Early Years
Calculation	Children draw the number of objects and then cross out the amount subtracting.
$5-1=4$	0000
	$5-1=4$

- Sabmancion	Year 1
Calculation	Written Strategy
$8-3=5$	Children begin by drawing the amount to begin with, and cross out the amount they are subtracting: $00000 \varnothing \varnothing \varnothing$
$5-2=3$	Children to use part-whole model to show how subtracting creates two parts, helping to make link with addition.
$12+5=17$	Children are taught how to use a blank number line for subtraction (counting backwards) and then encouraged to draw their own number line:

- Sabiacion	Year 2
Calculation	Written Strategy
$18-6=12$	Children begin to use practical equipment in columns to calculate the answer, moving to recording this written:
$64-21=43$	After becoming secure recording their answer pictorially (left), they begin to record their subtractions in column subtraction (right):
$31-15=16$	When the children become confident, they begin to use subtraction with exchanging:

Sabipacion	Year 3
Calculation	Written Strategy
$68-35=33$	Children only record pictorially (left) at the very beginning of Year 3 to recap prior learning. Children to then only record abstract (right):
$243-27=216$	Children to use pictorial representation to become confident with column subtraction using 3-digit numbers including exchanging:
$421-289=$	Children to move to column subtraction without using pictorial representations:

Sabieation	Year 4
Calculation	Written Strategy
$187-25=162$	Children to record subtraction in columns:
$2,537-1,819=718$	Children use column subtraction with up to 4-digit numbers:

| Salculation |
| :---: | :---: | :---: | :---: |
| 254,716 - 83,584 |
| $=171,132$ |

	Early Years
Calculation	Written Strategy
Double 3	Children are taught that doubling means adding two groups of the same amout together. $\begin{aligned} & \text { Double 3 } \\ & 000000 \\ & 3+3=6 \end{aligned}$

\begin{tabular}{|c|c|}
\hline \& Year 1

\hline Calculation \& Written Strategy

\hline 3 lots of 4 \& To help solve problems, children will use concrete objects and pictorial representations to support their ideas of multiplication:

\hline 4 groups of 2 \& Children will be introduced to an array to support multiplication and to support the understanding that multiplication is repeated addition

$$
2+2+2+2
$$

\hline
\end{tabular}

	Year 2
Calculation	Written Strategy
$3 \times 5=15$	Children will be able to represent a multiplication calculation using an array and write the multiplication symbol within a number sentence. Children will also understand that multiplication can be carried out in any order (commutative)
$5 \times 10=50$	Children will understand the operation of multiplication as repeated addition on a blank number line:

	Year 3
Calculation	Written Strategy
21×3	Children will be taught to multiply numbers (TO $\times \mathrm{O}$) through partitioning and the formal written method of grid multiplication. This method will also help children to gain a solid understanding of multiplying a multiple of 10 . $60+3=63$
$83 \times 4=332$	Children will be taught to multiply numbers ($\mathrm{TO} \times \mathrm{O}$) using the formal written method of expanded column multiplication and make the link to grid method:

	Year 4
Calculation	Written Strategy
$138 \times 4=552$	Children to record multiplication in expanded method, like Y3 for 2 and 3-digit numbers:

	Year 5
Calculation	Written Strategy
$4,326 \times 7$	Children to move to formal short multiplication (compact) up to 4-digits:
$43 \times 25=1,075$	Children taught long-multiplication method to up 4-digits:
$136 \times 27=3,672$	$\begin{array}{r} 136 \\ \hline+272 \\ \hline 272 \\ \hline 162 \end{array}$
$\begin{aligned} & 2,756 \times 43 \\ & =118,508 \end{aligned}$	

	Year 6
Calculation	Written Strategy
$\begin{aligned} & 3,829 \times 36 \\ & =137,844 \end{aligned}$	Children use long multiplication as shown in Year 5:
$7-0.52=6.48$	Children use short multiplication as shown in Year 5, also using the strategy for decimal numbers:

	Early Years
Calculation	
	Half of $6=3$
	\ddots

	Year 1
How many groups of 5 are in 10?	Children will be introduced to an array to support division:
Share 12 into 3 groups	Children will understand equal groups to divide:

Calculation		Year 2
$15 \div 5=3$		
and write the division within a number sentence:		

${ }^{3}{ }^{3}+{ }^{\text {D }}$ Divisision	Year 3
Calculation	Written Strategy
$17 \div 4=4 r 1$ $7 \div 3=2 r 1$	Before formal short division is used, children will develop a solid understanding of remainders. E.g. "how many groups of 4 are in 17":
$48 \div 4=12$	Children are first taught short division method where there are no remainders being passed through the calculation:
$45 \div 3=15$	When children are confident with the above 2 processes, they begin to use short division where there are remaining digits being passed through:
$57 \div 4=14 r 1$	Where there is a remainder at the end of the calculation, children note this as ' rX ':

	Year 4
Calculation	Written Strategy
$268 \div 4=67$	Children to use short division as in Y 3 , for 2 and 3-digit numbers:
$295 \div 7=42 r 1$	Where there is a remainder at the end of the calculation, children note this as ' rX ':

	Year 5
Calculation	Written Strategy
$1,410 \div 6=235$	Children to use short division as in Y3, for up to 4-digit numbers:
$9,270 \div 7=1,324 \frac{2}{7}$	Children write remainders as ' rX ', before moving to as fractions: $\begin{aligned} & 1324 \\ & 79^{2} 2^{1} 7^{3} 0 \\ & 1324 \\ & 79^{2} 2^{1} 7^{3} 0 \end{aligned}$

	Year 6
Calculation	Written Strategy
$8,560 \div 6=1,426 \frac{4}{6}$	Children use short division as in Year 5: $6 \longdiv { 8 4 2 6 } ^ { \frac { 4 } { 6 } 5 ^ { 1 } 6 ^ { 4 } 0 }$
$3,148 \div 8=393.5$	Children use short division as in Year 5 but using decimals to find remainders when appropriate:
$3,042 \div 13=234$	Children divide by 2-digit numbers using the above short division strategy, noting down their times tables to support:
$511 \div 35=14 \frac{21}{35}$	Children become confident when remainders moving through the division are more than 1 digit:

